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Analysis of 1-D Moment Equations for Immiscible Flow

Kenneth D. Jarman and Thomas F. Russell

ABSTRACT. We derive and analytically and numerically solve statistical mo-
ment equations for immiscible flow in porous media in the limit of zero capil-
lary pressure, with application to secondary oil recovery. Mean and variance of
(water) saturation exhibit a bimodal character; two shocks replace the single
shock front evident in the classical Buckley—Leverett saturation profile.

1. Introduction

Subsurface geologic properties at field scales are uncertain, and are often de-
scribed statistically in practice. Flow profiles in such porous media are uncertain,
and statistical flow outcomes are appropriate. We are primarily interested in mean
behavior and a measure of the uncertainty about this mean.

A “zeroth-order” model of mean flow with averages of geologic properties ig-
nores correlations between flow variables. Monte Carlo simulations of many realiza-
tions of geologic properties to estimate moments requires much computation time
and careful sampling techniques [8], [9], [28]. Macrodispersion theories in contam-
inant transport capture a first-order effect of fluctuations via covariance functions
in PDEs for the mean concentration [5], [10].

We derive second-order PDEs for the covariance functions and the mean flow,
and solve for these moments simultaneously. The fundamental problem of closure
of the system is addressed by a perturbation argument. The resulting moment
equations directly approximate the local mean and covariance functions, for general
boundary conditions and general stochastic geology [31].

1.1. Applications. A statistical description of subsurface flow is of particular
interest for secondary oil recovery. The principal difficulty is a non-convex nonlin-
ear flux function in an advection equation that leads to discontinuous solutions.
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2 KENNETH D. JARMAN AND THOMAS F. RUSSELL

Standard pressure—saturation equations for 2-D horizontal flow of two immiscible
fluids in porous media, in the limit of vanishing capillary pressure (p. = 0), are

(1.1) ¢v(x) = —K(x) Vh(x), V-v(x) =0,
(1.2) Ops(x,t) + V- [f(s(x,1))v(x)] = 0.

These are taken to be valid from laboratory (centimeters) to field scales of reservoir
depth (10-100 meters) and length (100-1000 meters). Hydraulic conductivity K
may be an anisotropic tensor; here, for simplicity, it will be an isotropic scalar K.
Assume also that K depends weakly on (water) saturation s [1], [3]. Apply (1.1)-
(1.2) to the flow of oil and water, for arbitrary fluid mobilities. Denote the total
velocity, a scaled total volumetric flux of both fluids, by v, hydraulic water head
by h, and porosity (assumed constant) by ¢. The fractional flow function f(s),
for p. = 0, represents the fraction of v due to water. It is typically S-shaped; we
use here a functional form arising from quadratic relative permeabilities (see [1]),
though our method does not depend on any such specific choice.

Capillary pressure regularizes sharp fronts caused by the nonlinear advection
term. To obtain a linear approximation to this effect, add epV?s(x,t) with ep > 0
to the right side of (1.2). Letting ep — 0 defines the vanishing-viscosity solution
[25], which is the one we seek.

As is standard in subsurface applications, let Y = In K be a random field
with prescribed mean and covariance functions; e.g., it is often claimed that Y is
multivariate Gaussian, based on empirical observations [6] (our method does not
depend on this). Through (1.1)—-(1.2), v and s are thus random fields. No other
underlying sources of uncertainty are considered in this study.

Under the assumptions stated above, with steady boundary conditions, a steady
v can be determined from (1.1). We evolve s from the stochastic PDE (1.2),
assuming v is known. Moments of v and h can be estimated from established
theory ([29] and [31] use moment equations). We seek to combine analytical and
numerical techniques to model the propagation of uncertainty from an underlying
random field Y (x), through v(x), to the solution s(x,t).

1.2. Previous work. Existing work on moment differential equations (MDEs)
focuses mostly on advection equations with linear flux functions [11], and some non-
linear subsurface flow equations of a form different from (1.2) [2], [27], [29], [30].

Langlo and Espedal [16], [17] presented a macrodispersion approach for the
stochastic version of (1.2). The flux function is expanded in a Taylor series, and
high-order terms are neglected; then standard techniques represent macrodispersiv-
ity as a function of flow velocity covariance. Zhang, Tchelepi, and Li take advantage
of the steady velocity field, and transform 2-D flow to 1-D Lagrangian flow along
streamlines [32], [33]. Then they formulate integral equations for moments from
ensemble averages over the streamtubes.

An Eulerian MDE approach has been successful for single- and multiphase
pressure and velocity equations [29], and a natural next step is to extend the
theory from flux equations to transport equations. This framework differs from
streamtubes not only in formulation, but also in that the MDEs need no velocity-
distribution assumption, and an extension to transient velocity fields is relatively
straightforward. The approach applies to any probability distribution of geologic
properties and any correlation function, and does not require stationarity. Other
stochastic theories generally require such restrictions.
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Equations are derived in §2. In §3, we reduce the mean and variance equations
to a simple form. These are shown to be strictly hyperbolic for 1-D flow, and an
analytical solution is given in §4. Classification is briefly discussed for 2-D equa-
tions. Details of the results outlined here are presented in [13]. We conclude with
an evaluation of our results and their practical implications, and a brief overview
of additional questions that warrant future investigation.

2. Moment Equations

We compare two different approaches for statistical MDEs of 1-D flow. In §2.1,
we expand fields in the form u = {(u) + du and the resulting MDEs are closed by
neglecting products of ‘4’ terms. Analogous equations in §2.3 result from a full
asymptotic expansion. We show in §4 that the latter yields moments that violate
physical constraints. In both cases, random fluctuations in ¥ = In K are assumed
small: oy < 1. We can immediately generalize to higher dimensions via vector
notation. Moments of h and v are assumed known from (1.1) and moments of Y.

The 1-D saturation equation (1.2), with initial data s(z,0) = g(z), is

(2.1) Os + 0z(f(s)v) =0,

We assume that g is known with certainty. Solutions are defined in terms of van-
ishing viscosity as in §1.1; henceforth, this is tacitly understood.

2.1. Two-term expansion. Moment equations may be derived in a number
of ways. For examples of commonly used methods applied to various models in
subsurface flow and transport, see [5], [7], [10], [11], [24], [29]. Here we apply a
standard approach, separating mean fields from random fluctuations.

Let (-) denote the expectation operator, defined by

(2.2) <wE4¢wmmm

for any integrable function ¢ :  — R on the sample space 2 with probability
measure P. We omit reference to w in what follows.

The random field Y is decomposed into deterministic mean plus random fluc-
tuation: ¥ = (Y) 4+ §Y. Each field dependent on Y is represented similarly:
(2.3) h(z) = (h)(z)+0h(z), o(z)=(v)(z)+dv(z),

s(z,t) = (s)(z,t) + ds(z,t).

Recall that we only need the decompositions of v and s here. Next, the fractional
flow function is expanded in a Taylor series around (s):

(2.4) f(s) = f({s)) + f'({s))0s + %f”(<8>)582 o

So far, we make no assumption regarding the size of ds relative to (s).
To obtain the mean-saturation equation, apply the operator (-) to (2.1):

(2.5) 8y (s) + Oz [f((S)) (v) + f'((s)) (65 dv) + %f"((S)) (v) (d5”)

+ 0" (35%00) + 3 () ) (55°) + - | =0,

1
2
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The flux terms include a nonlinear advective mean, two covariances, and higher-
order moments. For the saturation-fluctuation equation, subtract (2.5) from (2.1):

0465 + Oa [f((S))5v + 1'((s))ds (v) + f'({s)) (95 6v — (ds 6v))

(26) 45" () (0) (55— (65%)) + 51" ((s) (5560 — (3%60)) + -] = 0.

We derive equations for the unknown covariance functions (§sév) and (Js?), using
the following additional notation. The independent variables are x and ¢ except
where noted, and -|, denotes the replacement of = by some y different from z.
It is convenient, and useful, to derive equations for the more general two-point
covariances (dsdv|,) and (dsds|,) rather than for one-point covariances.

To obtain an equation for the saturation-velocity covariance (dsév|,), multiply
(2.6) by dv(y) and apply (-). This results in:

9y (9sduly) + Oz [f(<3)) (0vdvly) + £'((s)) (v) (ds uly) + f'({s)) (ds0v dvly)
(2.7) —|—%f”((s)) (v) (3s%6v]y) + %f”((s)) (0560 6v],) + - ] =0.

Similarly, multiplying (2.6) by 6&s(y,t), and using the identity' dsd;ds|, +
08|y 0¢0s = 0y (0sds|y), yields this equation for the two-point saturation covariance:

01 (5505ly) + 02 [ F((5)) 551, 50) + I'({5)) (0) {8 Gsl,) -+ 7'((s) {6 5 sl )
(2.8) 3" (o) (3320sly) + 35" ((5)) (35700 3sl,) + -
0, [ £((sh) (8 5ol + F'({sl)) oly) (551,559 + /() (55 50)],59)
3" Usly) (o) (55%1yB5) + 5 £ (o)) (G520} ) + -] =0.

2.2. Closure by perturbation argument. If oy < 1 so that fluctuations
and their derivatives may be assumed small relative to the means, and if f is
smooth, then we can approximate (2.5)—(2.8) by a closed, coupled system. Defin-
ing csy(z,y,t) = (ds6v|y), cs = (Is0s|y), ¢y = (Jvdv|y), (s)|y = (s) (y,t), and
Coo(T,9,t) = s (y, z,t), the resulting system is

(292)  8(s) + L[ F(N) ©) + £ (Do + 5 (N)o? )] =0,
(2.9) Bicsn + Da [ F((N)ew + 1'((8)) (V) es] = 0,

(2:9¢) Orcy + 0, [ F(New + /() (0 s + 0, [F(New + /() (vly) o] = 0.

Initial data are (s) (z,0) = g(x), ¢sv(x,y,0) = cs(z,y,0) = 0; recall that (v) and
(0vdv|y) are assumed known. Both (2.9b) and (2.9¢) have advective flux terms, are
coupled to the mean equation (2.9a), and are first-order in o%. This is consistent
with the approximation to (2.9a), which is second-order in oy.

Another common closure argument, which may be called a Gaussian assump-
tion, might be applied here. For example, for the linear case (f(s) = s), (2.9) is
exact if one assumes that velocity and saturation are jointly multivariate normal [7].

IThe identity is not valid in a strong sense for discontinuous solutions. Recall, however, that
we define solutions in terms of the (smooth) viscous solution, in the limit ep — 0.
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This follows without a perturbation argument. The linear case under this assump-
tion is studied in [11], where the effect of small-scale diffusion is included. Using
simulations, we found that the Gaussian assumption, even for transformations of
saturation and velocity fields, is inappropriate for this problem [12].

Note that the mean equation (2.9a) contains the functions oy, = ¢4 (2, z,t) and
02 = ¢s(z,,t) rather than cgy(z,y,t) and cs(z,y,t). This mix of one-point and
two-point covariance functions prevents us from immediately treating the MDEs as
classically hyperbolic, even though they can be put in conservation-law form. Also,
independent variables z and y are permuted in (s) and ¢y, in (2.9¢). In general,
(s) |y # (s), and €y, # c5,. We address these issues in §3.

We refer to this problem as “1-D,” even though the covariance functions involve
two spatial variables, and the saturation covariance has fluxes in both directions.
The two variables represent two different points in the same 1-D domain. Similarly,

the “2-D” problem has four spatial coordinates.

2.3. Infinite expansion. In this alternative derivation, flow variables head
h(z), velocity v(x) and saturation s(x,t) are represented by formal infinite pertur-
bation series expansions in powers of a parameter e:

(2.10) h= z "hp(z), v= Z e"vn(x), s= Z €"sn(z,t).
n=0 n=0 n=0

The expansion parameter € = oy is shown to be appropriate within the context of
flow equations (1.1) [5, pp. 184-190], [31]. For example, for single phase, stationary
uniform mean flow in 1-D, o is approximated by €* (vi) = vZo}.

Moment equations analogous to (2.9) can be derived [13]:
(1) Biso+3u[flsooo] =0, B (s) + 0 [0S (s0) (51)] =0,
(211b) 90 {s2) + 8, [ £(50) 02) + £/ (s0)or, + 1'(50) (82) 0 + 31" (s0)ow0] = 0,
(2.11c) OsCsy + On [f(s())cv + fl(so)vocsv] =0,

(211d)  Bucs + 02 £(50)Gu + F'(50)t0Cs| + 8y [£(s0ly)cs + F'(s0ly)volycs| = 0.

Initial data are given by so(z,0) = g(z), (s1) (z,0) = (s2) (£,0) = ¢sp(2,9,0) =
¢s(z,y,0) = 0. The second-order mean is so + € (s1) + €2 (s2). Note that the argu-
ment of f(¥) is s, the zeroth-order mean. The system is in fact closed again using
a perturbation argument, but now this argument is contained in the assumption
that the formal power series in € converges. Thus, throughout §2, second-order
equations are closed by assuming that heterogeneity is weak (oy < 1).

3. Classification of reduced equations
We exploit special structure in the 1-D equations that allows simplification and
classification of (2.9) and (2.11). For classification, we need the following
DEFINITION 3.1. Let u(z,y,t) :R2 xRy = R*, F:R* - R?, and G : R* —
R™. A system of equations in conservation-law form is given by
(3.1) ou+ 0,F(u) + 9,G(u) =0, u(z,0) =uo(z).

This system is hyperbolic if the eigenvalues of ¢; DF (u) 4+ ¢; DG(u) are real for all
¢1, ¢2 € R, where DF and DG are the Jacobian matrices of F and G [20].
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We expect the equations to be nearly hyperbolic since the original deterministic
PDE (1.2) is hyperbolic, but the systems (2.9) or (2.11) as given cannot even
be written in conservation-law form due to the inconsistencies mentioned above.
However, we show that both sets of moment equations reduce to hyperbolic systems
of conservation laws and yield analytic solutions. The key discovery that allows this
reduction is a relationship between covariance functions in 1-D.

Observe that velocity v is constant in 1-D, so it is merely a random variable
rather than a random field. Thus, velocities at any two points in space are perfectly
correlated (they are the same random variable). Equivalently, the velocity corre-
lation length is infinite. This infinite correlation length characterizes the principal
difference between stochastic subsurface flow in one and two space dimensions [12].

3.1. Two-term expansion. The MDEs (2.9) reduce to a system of hyper-
bolic PDEs. The first step to this end addresses the inconsistencies mentioned
earlier.

Both expansion terms (v) and dv are constant: by applying the expectation
operator to ;v = 0 we obtain 9, (v) = 0, so that

0=0,v=0;(v) +0;6v = 9pov=0.

This implies that ¢,(z,y) is also constant, and that cs,(,y,t) is independent of its
second argument. Consequently, ¢, is identical to the second-order approximation
to velocity variance o2, and cs, (z,y,t) is identical to o4, (z, ).

This last identity removes the inconsistency of having o, instead of c¢g,. We
still have o2 in (2.9a), instead of ¢,, and we have (s) |, and €y, in (2.9¢). A key
variance-covariance relationship, o, = 05 0y, follows: in 1-D, the saturation profile
is completely determined by knowledge of the velocity, for any positive time. Thus,
saturation and velocity are perfectly correlated.

We divide (2.9b) by o, > 0, and retain only the first two equations in (2.9)
in the following. Replace ¢, by o2 and c;, by 0,05, to reduce the system to the

v
following new equations for mean and standard deviation of saturation:

(s) (W) F((8)) + o0 f ((8))os + (W) 7 ((s))o? ) _
(32) ( ) + 0 ( oo f(()) + (v) ' ({s))0rs ) =0

Dependence on the second space variable y has been eliminated. Thus, (3.2) is in
conservation-law form, with u(z,t) = ({(s),0s), and flux function

Flu) = ( (0) f({s)) + o0 f'({s))as + 5 (v) " ({5))o ) _

s

auf({8)) + (v) f'({s))o

LEMMA 3.2. The moment equations (2.9) reduce to a hyperbolic system.
PROOF. It remains to show that (3.2) is strictly hyperbolic. The Jacobian

matrix DF((s),05) = ( Jin gz ) has entries
Ji2 J22

Ji1

() '({s)) + o f"((s))os + % () FO(s))a3,

Jiz = ouf'((s) + () f'((s))os,  jaz = (v) F'({s))-
DF is symmetric; thus the eigenvalues of DF are real [26], hence (3.2) is hyper-
bolic. In fact, we show that (3.2) is strictly hyperbolic; i.e., DF has a complete
set of linearly independent eigenvectors [20]. If the eigenvalues are distinct, then
they must correspond to independent eigenvectors. Thus, we may assume that DF
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has only one distinct eigenvalue. This occurs when the discriminant of the char-
acteristic polynomial vanishes: (ji11 — j22)? + 452, = 0. But this would imply that
ji2 = 0, hence DF is a multiple of the identity, and it again has a complete set of
eigenvectors. The conclusion follows. |
In addition, the eigenvalues are distinct unless ({s), o) € {(0,0), (1,0)} [12].

3.2. Infinite expansion. The evolution of moments in this case is given by
the system (2.11). If velocity is constant then v; is constant for each j, so long
as the perturbation series can be differentiated termwise. Thus, ¢,(z,y) is also
constant, and ¢, (2,9, t) is independent of its second argument. Consequently, ¢, is
identical to the second-order approximation to velocity variance o2, and ¢z, (z,y, t)
is identical to o, (z,t). Finally, the relationship o, = 0, o, holds as before. We
obtain these equations analogous to (3.2):

S0 vo f(s0)
€(s1) vo f'(s0) €(s1)
(33) 0| €(s2) |+, | € (v2) f(s0) +0u f'(s0)os +vo f'(s0) €* (s2) | =0.
+ 300 f"(s0)02
Os oy f(s0) +vo f'(s0)0s

We have shown that this system is (not strictly) hyperbolic [13]. The Jacobian
matrix in general does not have a full set of linearly independent eigenvectors. This
degeneracy leads to secular terms in the solution. Use of the second-order mean as
the argument of f(*) in §2.3 yields a modified infinite expansion that does not have
this drawback, and is a fourth-order correction to the two-term expansion [12].

3.3. Uniqueness, and an additional analytical result. Because (2.9) and
(2.11) are nearly hyperbolic systems, one might expect to extend uniqueness meth-
ods from the theory of such systems. The viscosity method is an appealing way to
prove uniqueness [25]. Variations on this approach generally require systems that
are genuinely nonlinear or linearly degenerate ([25]; see [4] for a more recent result
and additional references). Neither the deterministic version of equation (2.1) nor
the reduced systems above possess either of these properties. Therefore we cannot
apply existing uniqueness arguments to (2.9). A review of the literature does not
reveal a uniqueness result general enough to guarantee uniqueness for (2.9). Thus
uniqueness remains an open question; however, physical and mathematical argu-
ments suggest that such results can eventually be obtained. For now, we must be
satisfied with

CONJECTURE 3.3 (uniqueness). Moment equations (2.9) or (2.11) have at most
one vanishing-viscosity solution for uniformly bounded, measurable initial data.

Now we may obtain a more general form of the covariance relationship stated
earlier, directly from the moment equations.

LEMMA 3.4. If there exists a unique solution to (2.9) with bounded, measurable
initial data, then

(34) Cs Cy = Csy Esv-

The proof in [13] uses the fact that the same PDE is satisfied by both cs, sy
and cs;c,. Again 05, = 050, follows, by letting y — z so that ¢; — o2 and

Csy — Osy. It is important to recognize that this covariance relationship follows
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1

0.8f

0.6f

0.4r

Mean saturation (s 0

0.2r

0

-0.
—6.5 0 0.5
x-v,t

FIGURE 1. Mean saturation, linear flux with Gaussian initial pro-
file for uniform mean flow. Both the two-term (solid) and infinite-
term (dotted) moments exhibit bimodal behavior. The latter vio-
lates physical bounds on saturation.

from observation. That it is also a consequence of the moment equations (subject
to uniqueness) shows that the MDEs are consistent with this intuitive result.

4. Solution

Solutions of nonlinear hyperbolic conservation laws consist of shock and rar-
efaction curves in phase space [23], [25]. We present results for the linear advection
case first, then a solution for nonlinear advection with the two-term expansion.

4.1. Linear advection. Figure 1 shows mean saturation obtained from (3.2)
and (3.3) for linear fractional flow (f(s) = s) with Gaussian initial profile. This
linear-flux case represents the pure-advection form of conservative solute transport
in single-phase flow, with s representing concentration of solute. Both solutions are
bimodal, and the solution to (3.3) violates physical bounds on saturation.

This bimodal profile is a non-physical result; we do not expect an initial local-
ized pulse of solute to have bimodal behavior in the mean. Adding a linear diffusive
effect will not eliminate bimodality, as is evident in the nonlinear case (§4.2), where
numerical and artificial diffusion are present in our numerical scheme.

We have used these standard results for uniform mean flow for z € [0, L], with
stationary log hydraulic conductivity ((Y') and oy do not depend on z) [5], [10]:

K o} KgJ\®
oen="2 (1-2), = (Bed) g,
where K¢ = exp({(Y)) and J is the negative mean head gradient. We used param-
eters KgJ = 0.5, ¢ =0.2, and oy = 0.5.

REMARK 4.1. Bimodal mean concentration (or saturation, in our case) is noted
in [15], [18], and [19]. All use methods to derive mean transport equations that do
not involve second-order corrections. Further details and comparison of our work
to these results can be found in [12] and [13].

4.2. Nonlinear advection. Equation (3.2) is in the form (3.1) with G = 0.
For nonlinear F(u), a solution consists of a sequence of shock waves, constant states,
and rarefaction waves. We will omit considerable detail that requires an appeal to
the elegant theory of hyperbolic conservation laws. For much more detail, see [13].
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FIGURE 2. Construction of the slow rarefaction R; from (1,0).

We refer to the space with coordinates u = (uy, us) as phase space. Rarefaction
waves are integral curves of the vector fields defined by eigenvectors of DF'. Shocks
are allowed if we consider the weak form of (3.1). Then the Rankine—Hugoniot
condition gives an expression for the speed of the shock, and entropy conditions
are imposed to capture the vanishing-viscosity solution. In particular, we impose
entropy conditions of Lax [25] and an extension due to Liu [21], [22].

We consider sure (deterministic) initial saturation given by the Heaviside func-
tion s(z,0) = H[—z], so that o, is initially zero. First we simplify the notation of
(3.2) as follows. Set u; = (s) and uy = o5, and introduce the scaling 7 = (v) t, so
that 8; = (v) 8,. Let € = o,/ (v). This ratio is consistent with the e previously
used as the expansion parameter. The scaled equations are

w fHeflus+ 3 "3\ _
(4.1) aT(u2)+am( Sete 2)_0.

Note that the argument of f(*), the kth derivative of f, is always u;. Let u =
(u1, uz). The Jacobian matrix is

prta) = ( /LI ),
ef' + fluz f

From §3.1, its eigenvalues are real and may be ordered A; < A2 except at u €
{(0,0), (1,0)}, where both are zero. The associated eigenvectors are ry(u), k =1, 2.

We look for solutions to (4.1) in the phase space for (u1, uz2). The points
u = (1,0) and u = (0,0) are endpoints of the solution to (4.1). They represent a
boundary condition and the initial condition within the spatial domain, respectively.
We find that a rarefaction connects to (1,0). This curve Ry is shown in figure 2
to be an integral curve of the eigenvector associated with the smaller eigenvalue
(a “slow” rarefaction). A shock must connect (0,0). Using the Rankine-Hugoniot
and entropy conditions, we construct the shock curve Ss (see figure 3).

The simplest connection between R; and S, is a single slow shock, denoted
S1 (see figure 3). The complete solution constructed in this manner is shown to
satisfy entropy conditions in [13]. The solution in physical space is shown in figure
4, and is compared to the solution obtained from our numerical PDE scheme, for
L=2 m=1/2, (v) =5/2, 0, = 5/4 at a fixed time ¢t = 0.2.

Uniqueness of the solution remains in question. Most results, again, require
genuine nonlinearity or linear degeneracy, and our system does not satisfy these
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curve is obtained from semi-analytical construction of shocks and
rarefaction curves in phase space; dashed curve is obtained from
numerical PDE scheme applied directly to (4.1).

conditions. Liu extended existence and uniqueness results to more general systems
[21], [22], but the restrictions he places on flux functions are not met by F; and F5.
However, it is clear in figure 4 that this solution matches the solution obtained from
our numerical PDE scheme, applied directly to (4.1). Our upwind PDE scheme is
conservative, and includes numerical and artificial diffusion. The solution obtained
using this scheme is therefore an approximation to the viscous solution. The dif-
fusion coefficient is roughly three orders of magnitude smaller than the jumps in
solution values. Thus the numerical solution is near the vanishing-viscosity limit.
Furthermore, this shows that linear diffusion terms do not eliminate bimodality in
the solution. Such terms only smooth out mean saturation fronts.

The saturation variance is supported primarily on an uncertainty interval be-
tween fronts. Physically, the solution represents two zones containing mixtures of
the two fluid phases (for example, water and oil), and a third containing only the
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FIGURE 5. Buckley-Leverett saturation profile at ¢ > 0.

oil phase. In the first zone, we have a smoothly varying mixture from the injection
boundary (xz = 0), where the mean oil content tends to zero, down to a constant
mixture just left of a shock. In the second zone, we have a constant mix of oil and
water. The solution does not represent physical reality. Rather than two shock
waves, the true mean saturation is more likely to have a smooth, diffuse profile.
Taken with the profile of o4, however, these second-order solutions provide some
insight into the propagation of uncertainty in two-phase flow.

In the limit o, — 0, the mean saturation tends to the classic Buckley—Leverett
profile shown in figure 5. In fact, the construction of the rarefaction and shock
profile is analogous to the solution of the scalar deterministic saturation equation.
For that solution, an initial rarefaction is followed forward in z, up to a point where
the shock speed matches the characteristic speed.

5. Conclusions

For spatial resolution of uncertainty, these bimodal results suggest that second-
order Eulerian MDEs may be inappropriate for 1-D immiscible flow. Unlike 1-D, v
has finite correlation length in 2-D, and macrodispersion models are based on cor-
relations in dv. In results for analogous MDEs for passive 2-D solute transport with
diffusion, bimodality was not observed [11]; one might expect macrodispersion to
lead to a similar result for immiscible flow. Nevertheless, in a forthcoming submis-
sion we show that somewhat mitigated bimodality does persist in 2-D, even with
diffusion terms [14]. More positively, for spatial averages such as oil-production
curves, good matches to Monte Carlo simulations are found.
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